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Introduction: 
Magnetic resonance imaging (MRI) studies of he brain can be classified into two general 
categories based on the information type that is being collected, namely those that seek to 
obtain morphological information and those that aim to describe physiological and 
functional properties. In the morphological category, we include imaging of tissue and 
cerebrospinal fluid (CSF) spaces, vasculature, and fiber bundles (connectivity). In the 
other category are mapping of brain function (fMRI), perfusion imaging, and diffusion 
imaging.  These are all topics that are separately treated in individual lectures in this 
course.  In this lecture, we will focus on the significance of magnetic field magnitude for 
these different types of brain imaging efforts. 
 
Morphological imaging of brain tissue: 
Anatomical images of brain tissue rely largely on proton density, T1, and T2 differences 
between different regions (e.g. cortex vs. subcortical nuclei) and tissue type (white 
matter, gray matter and CSF).  The region specific values for these parameters have been 
reported in numerous papers (1-13) for 1.5 T field strength.  Proton density is clearly a 
magnetic field independent parameter. However, relaxation times T1 and T2 are field 
dependent, generally increasing (14,15) and decreasing (16-18), respectively, with higher 
magnetic fields (also see review (19)). The conventional wisdom has been that the T1 not 
only increases with higher magnetic fields but it actually converges so that the 
distribution of T1 values among different tissue types would tend to become narrower; 
this, of course would predict a lower contrast in the brain at higher magnetic fields. 
However, this was shown not to be the case starting with the early human brain images 
obtained at 4 Tesla (20) and later on extended to 7 Tesla (21). In fact, contrary to 
expectations, the distribution of T1 values among different tissue types in the brain, 
including the difference between cortical gray matter and adjacent superficial white 
matter increase with increasing magnetic field (unpublished results). 
 
Lengthening of T1 with increasing magnetic field also holds true for blood. Blood T1 is 
insensitive to its oxygenation state, and varies linearly with field strength going from 1.5 
T to 9.4T according to T1= 1.226+0.134BO. This imparts a clear benefit in time-of-flight 
type angiographic imaging, as well as perfusion imaging using spin labeling techniques. 
 
While T2 value in brain tissue decreases with increasing magnetic fields, the decrease is 
far from linear.  For example, going from 1.5T to 7 T, the cortical gray matter T2 is 
reduced by ~ factor 1.6 (e.g. ~87 ms (7) vs. 55 ms (18)) while the magnetic field 
increases 4.7 fold. Interestingly, the apparent T2 values that are measured in a Carr-
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Purcell type sequence with multiple 180° pulses  are larger and similar to those observed 
at the lower fields, suggesting that exchange and/or diffusion in the presence of gradients 
may be a dominant mechanism responsible for the shortening of T2 with increasing 
magnetic field magnitude (16,17). For blood, however, the T2 decrease is dramatic and 
goes as the square of the magnetic field ((22) and references therein). While blood T2 is 
longer than tissue T2 at 1.5 Tesla, it is significantly shorter than tissue T2 at 4 and in 
particular 7 Tesla. 
 
With the recent interest in and availability of high magnetic field systems, another 
contrast mechanism that may become more frequently utilized is T2* or susceptibility 
variations among different brain components (e.g. (23,24)). While this mechanism is 
clearly expected to be useful in visualizing deoxyhemoglobin containing vasculature, i.e. 
the venous system (24), it actually can provide contrast among brain tissues such as gray 
and white matter as well (23). 
 

As in all MR applications, image quality, measurement time, and/or spatial resolution 
for morphological brain images depends on SNR.  SNR increases with increasing field 
strength.  SNR, however, becomes rather complex when high magnetic fields (hence high 
frequencies) are considered with lossy biological samples such as the human head.  The 
relationship between SNR and field strength has been examined for biological samples in 
numerous theoretical studies (25-31), predicting increases with field strength.  Field 
dependence of SNR was experimentally examined in the human head, initially comparing 
0.5, 1.5 and 4 Tesla (~21, 64, and 170 MHz, respectively), using a surface coil, 
documenting that SNR for the 1H nucleus increased at least linearly at the higher 
frequencies (32).  More recently, B1 field profile and SNR was examined in the human 
head for 4 and 7 Tesla when using a TEM “volume” head coil (21). Using virtually fully 
relaxed images, the SNR was shown to scale ~2 fold going from 4  to 7T, more than 
linearly with field magnitude, in the center of the brain and less than linearly in the 
periphery. The diminished SNR gains in the periphery can be recovered using multi 
cannel array coils (33). Clearly, however, at high fields such as 3T and above, SNR must 
be considered as a function of location within the head and specific coil geometries.  This 
is because the human head/RF interactions approach “far field” conditions at magnetic 
fields like 7 Tesla where the wavelengths are comparable to or smaller than object 
dimensions, and the B1 exhibits a traveling wave behavior (34-38). 

Physiological and Functional Imaging in the Brain: 
 

Perfusion Imaging: Images of perfusion or perfusion changes associated with 
increased neuronal activity can be obtained using ASL techniques that utilize the water 
protons in the blood as an endogenous “transient” tag.  These methods rely on either 
continuous (e.g. (39-41)) (or dynamic (i.e. modulated) versions of continuous (42,43)) or 
pulsed (e.g. (44-46)) tagging approaches. All of these techniques benefit from increased 
T1 encountered in higher magnetic fields.  This is expected to ameliorate errors 
introduced by transit delays, extend coverage over the brain and yield higher CNR, and 
specificity to tissue. Excellent perfusion images based on continuous arterial spin tagging 
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have already been accomplished at 3T (47) and this approach has also been used for 
functional mapping at 3T (48). 

The tissue specificity of ASL improves because of the fact that tagged spins require a 
finite amount time to reach the capillaries and exchange with tissue water.  At shorter 
periods, larger blood vessels in the arterial side can dominate the measurement, 
confounding quantitation (e.g.(49)), and appearing as “activated” in perfusion based 
functional images.  In ASL measurements, generally the tag that can be detected in the 
veins subsequent to the tag’s passage through the capillaries is thought to be negligible 
and ignored, even though there has not been an experimental confirmation of this. At 
high fields, this potential contribution should vanish due to the short T2 of venous blood.   

Diffusion Weighted Imaging:  This type of imaging is used either for tractography or 
clinically for determining the alterations with the overall diffusion properties of water 
subsequent to a pathological change such as stroke.  This approach benefits from SNR 
gains of high field and but suffers from the shortened T2 with increasing magnetic field. 
Nevertheless, since the decrease in T2 is not strongly field dependent and SNR increases 
at least linearly, there are gains with increasing magnetic field, provided such gains are 
not lost in less then perfect hardware performance as the demands increase at the higher 
magnetic fields. 

Imaging of Neuronal Activity (functional brain imaging): In the armamentarium of 
techniques used for investigating brain function, functional magnetic resonance imaging 
(fMRI) has come to play a dominant role in both human and animal model studies.  
Today, functional images in the brain can be obtained using the BOLD mechanism using 
gradient echoes (GE-BOLD) (50-52), cerebral blood flow (CBF) changes using arterial 
spin  labeling (ASL) (e.g. (45,53-57) and references therein) or intravoxel incoherent 
motion (IVIM) (58,59), and cerebral blood volume (CBV) changes (e.g. (60-62)). The 
most commonly used fMRI approach is BOLD mechanism. Magnetic field magnitude 
plays a significant role with respect to contrast, contrast-to-noise ratio (CNR), spatial 
resolution, and specificity (i.e. accuracy) of functional images obtained with the GE-
BOLD mechanism (see reviews (63-65)). While the SNR gains with increasing field 
magnitude are significant in being able to obtain high resolution functional maps, the 
most dramatic impact of magnetic fields is on the accuracy of the functional images and 
CNR associated with signals that possess the highest degree of specificity with respect to 
boundaries of neuronal activity. This impact is a consequence of the role played by 
vasculature of different sizes in mediating MR detectable functional imaging signals.  

The deoxyhemoglobin (dHb) changes that ultimately give rise to BOLD effect 
appears first within the capillaries in parenchyma where neuronal activity is modulated; 
however, these changes are not static in space and propagate to draining veins distant 
from the site of neuronal activity. These draining veins contribute to GE-BOLD fMRI at 
all magnetic fields although the specific mechanisms that dictate their contribution differ 
with magnetic field strength. However, as the field magnitude increases, the small 
contribution from the capillaries, representing a significantly more accurate depiction of 
altered neuronal activity, increases virtually quadratically with magnetic field to attain 
magnitudes that are detectable now in GE-BOLD fMRI maps. While the GE-BOLD 
fMRI contains both these non-specific large vessel and specific capillary contributions at 
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fields such as 7 Tesla, the large vessel effects can be suppressed by using Hahn spin-
echoes (HSE) instead of gradient echoes (18,22,66); however, the Hahn spin-echo 
approach does not work at lower fields due to the contribution of intravascular blood 
signals to functional maps (e.g. (22,67)). 

Field dependence of BOLD based functional images must also take into account the 
contribution of physiologically induced fluctuations in consecutively acquired images in 
an fMRI series (68-70).  In GE-BOLD images, there is a signal dependent contribution to 
these fluctuations that increase in magnitude with magnetic field. When these fluctuations 
dominate over thermal noise the CNR of the functional images, then CNR gains with 
magnetic fields are ultimately limited. However, for high resolution and high contrast 
imaging where the thermal noise dominates gains in CNR with higher fields are expected. 
Furthermore, HSE fMRI does not contain these fluctuations that are proportional to 
signal magnitude and hence improves in CNR with magnetic field (71). 

In contrast to the BOLD based functional images, field dependence is much more 
straight forward for CBF and CBV based mapping. They come through only SNR gains, 
and the impact of the T1’s on the method. For example, for ASL techniques, the long 
blood T1 at high fields is an advantage (49) while in the CBV based VASO method (62) 
the converging blood and tissue T1’s at the high magnetic fields is a disadvantage. 

Parallel Imaging:  
 
Parallel imaging with multichannel receiver coil arrays has rapidly become an integral 
part of MR imaging in the head and body. Parallel and high-field MRI are particularly 
promising when combined with one another. This is because the two approaches exhibit a 
high level of complementarity with respect to their favorable and less favorable 
characteristics regarding SNR, increased magnetic field inhomogeneities, and SAR. For 
neuroimaging, one of the most significant field dependent properties of parallel imaging 
is that its performance in terms of reduction factors that can be achieved increases with 
high magnetic fields ({Wiesinger, 2004 #1927} and references therein). It is therefore 
expected that for all the neuro applications listed above, parallel imaging will play an 
important role especially as the field magnitude increases. 
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